International cooperation

The Institute has long-term scientific ties with scientists from the world's leading centers studying plant-microbial interactions. This cooperation is supported by numerous prestigious international grants (INTAS, INCO-Copernicus, 7 EU Framework Program, EMBO, DAAD, Humboldt Foundation, Volkswagen Foundation, NATO Scientific Department, CRDF).

Currently, the team of participants interacts with the following scientific organizations:

  1. John Innes Center, Norwich, UK, Prof. Nicholas Brevin (Prof. Nickolas Brewin): collaboration in the research of cellular mechanisms of functioning of symbiotic nodules.
  2. Center for Agricultural Research, Laboratory of Molecular Interactions of Plants and Microorganisms, Touzouza, France, Prof. Claire Gough (Prof. Clare Gough): cooperation in the study of signaling interactions in the development of legume-rhizobial symbiosis;
  3. University of Tasmania, Plant Genetics Laboratory, Hobart, Australia, Prof. Eloise Fu (Prof. Eloise Foo): collaboration in the study of the role of phytohormones in the development of symbiotic nodules.
  4. University of Strasbourg, France, Prof. Leon Otten (Prof. Léon Otten): collaboration in the field of studying clT DNA and naturally transgenic plants.
  5. Department of Plant and Soil Sciences, Institute of Agricultural Biosciences, Oklahoma State University, Prof. M. Tadege: cooperation in the field of studying the mechanisms of somatic embryogenesis in plants.
  6. Department of Cellular and Molecular Biology, Kosar Boynord University, Iran, Dr. M. Azarakhsh (Dr. M. Azarakhsh): cooperation in the field of studying the autoregulation of nodule formation.
  7. Center for Synthetic Microbiology, Marburg, Germany, Prof. Anna Becker (Prof. A. Becker): collaboration in the field of RNA sequencing of phenotypically different clonal lines of highly effective strains of nodule bacteria.
  8. Institute of Plant Sciences Paris-Saclay, Paris, France, Prof. Pascal Rathe and Dr. Veronique Gruber (Prof. Pascal Ratet, Dr. Veronique Gruber): collaboration in the field of studying the molecular genetic foundations of the development of symbiotic nodules of seed peas and alfalfa.
  9. GenXPro GmbH, Frankfurt am Main, Germany, Dr. Peter Winter, collaboration on the study of gene expression in the development of legume-rhizobial and arbuscular-mycorrhizal symbioses using modern next-generation sequencing technologies, as well as plant genotyping through sequencing and the use of molecular markers for breeding plants.
  10. Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden, Prof. Katarina Pavlovsky (Prof. K. Pawlowski): collaboration in the field of studying the molecular foundations of actinorizic symbiosis, mechanisms of root branching in Pumpkins.
  11. Department of Plant and Soil Sciences, University of Pretoria, South Africa, Prof. Marion Meyer (Prof. J.J.M Meyer): collaboration in the field of research on the mechanisms of regulation of phytohormone balance in plants by growth-stimulating rhizospheric bacteria.
  12. Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Hale, Germany, Dr. Andrey Frolov: collaboration in the field of metabolomic and proteomic studies of symbiotic nodules and legume seeds.
  13. Faculty of Biology, Biochemistry and Plant Physiology, University of Bielefeld, Germany, Prof. Karl Dietz (Prof. Karl-Josef Dietz): cooperation in the field of studying the resistance of legumes and their symbiotic systems to heavy metals.
  14. Department of Biochemistry and Microbiology, Ghent University, Belgium, Prof. Anne Willems (Prof. Anne Willems): cooperation in the field of identification and characterization of new species of rhizobia.
  15. Lancaster Center for the Environment, Lancaster University, UK, Prof. Jan Dod (Prof. Ian Charles Dodd): cooperation in the field of studying the mechanisms of the positive effect of growth-stimulating rhizosphere bacteria on the development of plants under stressful conditions.
  16. Department of Biochemistry, University of Turku, Finland, Prof. Metza-Ketela (Prof. Metsä-Ketelä): cooperation in the field of the study of microorganisms producing biologically active substances.
  17. Institute of Computational Biology, University of Montpellier, France, Dr. Andrey Kayava (A.V. Kajava): collaboration in the field of prion research.
  18. Department of Biology, Duke University, Durham, USA, Prof. Thomas Mitchell-Olds (Prof. Thomas Mitchell-Olds): collaboration in the study of the genetic diversity of plant populations.
  19. Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, USA, Prof. Jeffrey Elhai (Prof. Jeffrey Elhai): collaboration in the field of studying the molecular mechanisms of cyanobacteria development.
  20. East Kazakhstan Agrarian Technical University, Zhangir Khan, Kazakhstan, Prof. Nurlan Sergaliev West Kazakhstan Agrarian Technical University named after Zhangir Khana, Uralsk, Kazakhstan, Prof. Nurlan Sergaliev (Prof. N.H. Sergaliev): cooperation in the field of metagenomic soil research.
  21. Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australia, Prof. Ulrike Mathesius (Prof. Ulrike Mathesius): cooperation in the field of hormonal regulation of nodule formation of legumes.

The results of the collaboration are reflected in the following joint publications:

  • Dolgikh A.V., Kirienko A.N., Tikhonovich I.A., Foo E., Dolgikh E.A. The DELLA proteins influence the expression of cytokinin biosynthesis and response genes during nodulation. Frontiers in Plant Science. 2019. 10: 432. IF 4.298, Q1
  • Kirienko A.N., Porozov Y.B., Malkov N.V., Akhtemova G.A., Le Signor C., Thompson R., Saffray C., Dalmais M., Bendahmane A., Tikhonovich I.A., Dolgikh E.A. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta. 2018. 248:1101-1120. IF 3.347, Q1.
  • Azarakhsh M., Kirienko A.N., Zhukov V.A., Lebedeva M.A., Dolgikh E.A., Lutova L.A. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development. Journal of Experimental Botany. 2015 66(22):7181-7195. IF 6.321, Q1.
  • Azarakhsh M., Lebedeva М.А., Lutova L.А. Identification and expression analysis of Medicago truncatula isopentenyl transferasegenes (IPTs) involved in nodulation. Frontiers in Plant Science. 2018. 9: 304. IF 4.298, Q1.
  • Azarakhsh M, Rumyantsev AM, Lebedeva MA, Lutova LA. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula. PLoS One. 2020 15(4):e0232352. IF ‎2.776; Q1.
  • Matveeva T.V., Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium // Plant Molecular Biology. 2019. 101: 415. IF 3.928; Q1.
  • Tvorogova V.E., Fedorova Y.A., Potsenkovskaya E.A., Kudriashov A.A., Efremova E.P., Kvitkovskaya V.A., Wolabu T.W., Zhang F., Tadege M., Lutova L.A. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula // Plant Cell, Tissue and Organ Culture. 2019. 138: 517–527. IF 2.232; Q1. 
  • Ivanova K.A., Tsyganova A.V., Brewin N.J., Tikhonovich I.A., Tsyganov V.E. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma. 2015. 252(6): 1505-1517. IF 2.327; Q1.
  • Tsyganova, A.V., Seliverstova, E.V., Brewin, N.J., Tsyganov V.E. Comparative analysis of remodelling of the plant–microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. Protoplasma. 2019. 256(4): 983-996. IF 2.327; Q1.
  • Tsyganova A.V., Seliverstova E.V., Brewin N.J., Tsyganov V.E. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33-3 allele encoding transcription factor PsCYCLOPS/PsIPD3. Protoplasma. 256(5): 1449-1453. IF 2.327; Q1.
  • Tsyganova A.V., Brewin N., Tsyganov V.E. Analysis of epitope distribution of arabinogalactan protein-extensins in pea (Pisum sativum) nodules of wild-type and mutants impaired in infection thread growth. Ecological Genetics. 2019. 17(3): 5-12.
  • Rumyantseva M.L., Vladimirova M.E., Stepanova G.V., Saksaganskaya A.S., Muntyan V.S., Kozhemyakov A.P., Orlova A.G., Becker A., Simarov B.V. Highly effective strains of nodule bacteria of alfalfa (Medicagovaria L.): molecular genetic characteristics and use in conjugate breeding // Agricultural Biology. 2019. Vol. 54. No.6 pp. 1306-1323
  • Penttinen P., Terefework Z., Lindstroem K., Greco D., Auvinen P., Muntyan V., Roumiantseva M., De Lajudie P., Becker A. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair. Journal of Basic Microbiology. 2016. 56(6): 680-685. IF 1.760, Q2
  • Magne K, Couzigou JM, Schiessl K, Liu S, George J, Zhukov V, Sahl L, Boyer F, Iantcheva A, Mysore KS, Wen J, Citerne S, Oldroyd GED, Ratet P. MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity. Plant Physiology. 2018. 178(1):295-316. IF 6.305; Q1.
  • Zhernakov AI, Shtark OY, Kulaeva OA, Fedorina JV, Afonin AM, Kitaeva AB, Tsyganov VE, Afonso-Grunz F, Hoffmeier K, Rotter B, Winter P, Tikhonovich IA, Zhukov VA. Mapping-by-sequencing using NGS-based 3'-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 (IPD3) in pea (Pisum sativum L.). PeerJ. 2019. 7:e6662. IF 2.353; Q1.
  • Ilina E.L., Kiryushkin A.S., Semenova V.A., Demchenko N.P., Pawlowski K., Demchenko K.N. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player? Annals of Botany. 2018. 122(5): 873-888. IF  3.454, Q1
  • Nguyen T.V., Wibberg D., Vigil-Stenman T., Berckx F., Battenberg K., Demchenko K.N., Blom J., Fernandez M.P., Yamanaka T., Berry A.M., Kalinowski J., Brachmann A., Pawlowski K. Frankia-enriched metagenomes from the earliest diverging symbiotic Frankia cluster: they come in teams. Genome Biology and Evolution. 2019. 11(8): 2273-2291. IF 3.726, Q2
  • Zdyb A., Salgado M.G., Demchenko K.N., Brenner W.G, Plaszczyca M., Stumpe M., Herrfurth C., Feussner I., Pawlowski K. Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS ONE. 2018. 13(1), e0190884. IF 2.776, Q2.
  • Demina I.V., Maity P.J., Nagchowdhury A., Ng J.L.P., van der Graaff E., Demchenko K.N., Roitsch T., Mathesius U., Pawlowski K. Accumulation of and response to auxins in roots and nodules of the actinorhizal plant Datisca glomerata compared to the model legume Medicago truncatula. Frontiers in Plant Science. 2019. 10, 1085. IF 4.106, Q1.
  • Tsukanova K.A., Chebotar V.K., Meyer J.J.M., Bibikova T.N. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis.  South African Journal of Botany. 2017. 113: 91-102. IF 1.504, Q2.
  • Mamontova T.,  Afonin, A. M., Ihling, C., Soboleva, A., Lukasheva, E., Sulima, A. S., Shtark O., Akhtemova G., Povydysh M., Sinz A.,  Frolov, A., Zhukov V., Tikhonovich I.  Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules. 2019. 24(8) 1603. IF  3.06, Q2.
  • Belimov A.A., Malkov N.V., Puhalsky J.V., Tsyganov V.E., Bodyagina K.B., Safronova V.I., Dietz K.-J., Tikhonovich, I. A. The crucial role of roots in increased cadmium-tolerance and Cd-accumulation in the pea mutant SGECdt . Biologia Plantarum. 2018. 62(3): 543-550. IF 1.384, Q2.
  • Safronova, V.I., Kuznetsova, I.G., Sazanova, A.L., Belimov, A.A., Andronov, E.E., Chirak, E.R., Osledkin, Y.S., Onishchuk, O.P., Kurchak, O.N., Shaposhnikov, A.I., Willems, A., Tikhonovich, I.A. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. International Journal of Systematic and Evolutionary Microbiology. 2017. 67(1) 001577. IF 2.166, Q2.
  • Raheem A., Shaposhnikov, A.I., Belimov A.A., Dodd I.C. Ali B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science. 2018. 64(4): 574-587.  IF 1.681, Q2.
  • Yamada K., Koroleva A., Laughlin M., Oksanen N., Akhgari A., Safronova V., Yakovleva E., Kolodyaznaya V., Buldakova T., Metsä-Ketelä M. Characterization and overproduction of cell-associated cholesterol oxidase ChoD from Streptomyces lavendulae YAKB-15. Scientific Reports, 2019, 9: 11850. IF 4.011, Q1.
  • Danilov LG, Matveenko AG, Ryzhkova VE, Belousov MV, Poleshuk OI, Likholetova DV, Sokolov PA, Kasyanenko NA, Kajava AV, Zhouravleva GA,  Bondarev SA. Design of a New [PSI+]-No-More Mutation in SUP35 With Strong Inhibitory Effect on the [PSI+] Prion Propagation. Frontiers in Molecular Neuroscience. 2019. 12, 274. IF 3.72, Q2.
  • Bondarev, S.A.; Antonets, K.S.; Kajava, A.V.; Nizhnikov, A.A.; Zhouravleva, G.A. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. // International Journal of Molecular Sciences. 2018. 19, 2292. IF 4.183, Q2.
  • Kliver S., Rayko M., Komissarov A., Bakin E., Zhernakova D., Prasad K., Rushworth C., Baskar R., Smetanin D., Schmutz J., Rokhsar D.S., Mitchell-Olds T., Grossniklaus U.,  Brukhin V. Assembly of the Boechera retrofracta genome and evolutionary analysis of apomixis-associated genes.  Genes. 2018. 9(4), 185. IF 3.331, Q2.
  • Elhai J., Khudyakov I.Y. Ancient Association of Cyanobacterial Multicellularity with the Regulator HetR and an RGSGR Pentapeptide‐Containing Protein (PatX).  Molecular Microbiology. 2018. 110(6): 931-954. IF 3.649, Q1.
  • Pershina E.V., Ivanova E.A., Korvigo I.O., Chirak E.L., Provorov N.A., Andronov E.E., Abakumov E.V., Sergaliev N.H. Investigation of the Core Microbiome in Main Soil Types from the East European Plain. The Science of the Total Environment. 2018. 631: 1421-1430. IF 5.589. Q1.

Subscribe to the newsletter of FSBCI ARRIAM

Что будем искать?